

COMPONENT TECHNOLOGY NEUTRAL IMPLEMENTATION

Jerry Bickle (Raytheon, Fort Wayne, IN, USA, Gerald.l.Bickle@raytheon.com)

Vincent Kovarik (PrismTech, vince.kovarik@prismtech.com)

ABSTRACT

This paper and demonstration describes a component-based,

technology neutral implementation approach based upon the

Joint Tactical Networking Center (JTNC) Software

Communications Architecture (SCA) [1]. SCA defines

specific technologies profiles (e.g., Common Object

Request Broker Architect (CORBA®) [2], Portable

Operating System Interface (POSIXTM) [3], etc.) that

provide the features for portability and reuse of a component

technology implementation. SCA allows other middleware

communication technologies besides CORBA such as Data

Distributions Service (DDS) [4] and POSIX Inter-Process

Communications (IPC) (e.g., shared memory, queue, etc.).

The direct usage of middleware communication and

component frameworks (e.g., SCA 2.2.2 [5] versus SCA

4.X) technologies in a component’s implementation makes

the implementation portable and reusable only for those

technologies. The paper and demonstration will describe the

component technology neutral implementation design

patterns for middleware communication and component

frameworks.

1. INTRODUCTION

The initial focus of the SCA is to promote portable and

reusable application code across real-time operating

systems, thus the usage of POSIX profile and minimum

CORBA profile on General Purpose Processor (GPP).

Starting with SCA version 4, the concepts of components

were introduced along with allowing other technologies

besides CORBA as the middleware for control and data

distribution. SCA 4 introduced additional POSIX and

CORBA profiles to address portability and reuse beyond the

GPP and into the signal processing elements. The usage of

POSIX profiles in a component’s implementation promotes

technology neutral implementations but even the usage of

POSIX IPC mechanisms can hinder the implementation

portability and reuse on another platform. Likewise,

component’s implementation using CORBA is tied to a

specific middleware technology but the implementation is

still portable and reusable for that technology as specified

by the SCA 4 CORBA profiles. The remainder of the paper

explains a component implementation design pattern for a

component’s implementation to be technology neutral and

abstracts the IPC technology being used for communication

by the implementation.

2. COMPONENT IMPLEMENTATION DESIGN

PATTERN

The Component Implementation Design Pattern, as shown

in figure 1 below, can be viewed as containing three

essential elements of a component as described below.

1. Component Container that is technology specific,

2. Component Implementation that is technology

neutral, and

3. Component Uses and Provides Ports (SCA

terminology) that is technology specific, which

relates to UMLTM [6] [7] Required and Provided

Ports.

Figure-1. Component Implementation Design Pattern

Illustration

 There can be many different component containers that

the same component implementation can be plugged into, as

shown in figure 2 below, such as SCA 2.2.2 Resource

Component Container, SCA 4.0.1 Resource (V222

equivalent) component container and SCA 4.1 User-Defined

Resource (V222 equivalent) component container. V222

equivalent means offers similar Resource interface

capabilities. In all cases, the same component

implementation can be plugged into each of the above

component containers.

Uses Port

Component

Implementation

Provides Port

Uses Port Provides Port

Component

Container

SCA CF::Resource or User-Defined Interface

Technology

Specific

Technology

Specific

Technology

Neutral

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

149

 Also in each of the above component containers (SCA

2.2.2, SCA 4.0.1 and SCA 4.1) there can be different

technologies (e.g., CORBA, DDS, POSIX IPC, etc.) for the

component ports that same component implementation is

plugged into.

Figure 2. Component Containers Illustration

The following sections give more details on each of the

elements of the Component Implementation Design Pattern.

3. COMPONENT CONTAINER

The component container is technology specific with respect

to: 1) the component framework (as defined by the standard,

e.g. SCA 2.2.2, SCA 4.0, 4.1, etc.) and 2) the middleware

technology (e.g., CORBA, DDS, POSIX IPC (queue, shared

memory, etc.), etc.). Note that a component may utilize

more than one middleware technology. The Component

Container Design Pattern from a UML perspective can be

viewed as depicted in figure 3 below.

 The component container contains a component

implementation and component ports. The component

container setups the component ports and associates the

component ports with the component implementation.

Figure 3. Component Container Design Pattern UML

Illustration

 The component container also implements CF’s

interfaces for:

• Life cycle management that relates to SCA

CF::LifeCycle interface

• Configuration management that relates to SCA

CF::PropertySer interface

• Port management that relates to SCA 4.x

CF::PortAccessor interface and SCA 2.2.2 CF::Port and

CF::PortSupplier.

• Component identification that relates to SCA 4.x

CF::ComponentIdentifier interface and SCA 2.2.2

CF::Resource interface

• Control management that relates to SCA 4

CF::ControllerComponent interface, SCA 4.1

ControllableInterface, and SCA 2.2.2 CF::Resource

interface

• Test management that relates to SCA 2.2.2 and 4

CF::TestableObject interface and SCA 4.1 Testable

Interface.

 The component container transforms CF interface

operations into implementation interface operations as

described in Component Implementation section 5.

Uses Port

Same

Component

Resource

Implementation

Provides Port

Uses Port Provides Port

SCA 2.2.2

Component

Container

SCA 2.2.2 CF::Resource

Uses Port

Same

Component

Resource

Implementation

Provides Port

Uses Port Provides Port

SCA 4.0

Component

Container

SCA4.0.1 CF::Resource

Uses Port

Same

Component

Resource

Implementation

Provides Port

Uses Port Provides Port

SCA 4.1

Component

Container

SCA4.1 User-Defined Resource

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

150

4. COMPONENT PORTS

In order to obtain a component technology neutral

implementation, one must place constraints on port

interfaces. Object Management Group (OMG) Interface

Definition Language (IDL™) [2] is used to define port

interfaces. The reason to use IDL to define a port interface

is twofold: 1) IDL is an industry standard for specifying an

interface and 2) standard mapping of IDL to an

implementation language (e.g., C[8], C++[9], Java, Ada,

etc.). UML interface definition is not considered since there

is a minimum set of UML primitive types defined and there

are no standard UML language profiles for translating an

interface into code.

 In using IDL, one must place constraints on IDL

interface and type definitions to avoid the use or reference

of CORBA name space in code that adheres to the IDL

standard language mappings. These constraints are:

• No CORBA types in interface operations, structs and

exception.

• No usage of SCA CF::Properties or DataType since this

contains any type.

 In order to adhere to these constraints, typedefs for IDL

primitive types and primitive sequence types must be used.

For example, invalid would be “void setFrequency (in long

freq)”. The valid interface operation for this would be “void

setFrequency (in FrequencyHzType freq)” where

FrequencyHzType freq is typedef to unsigned long IDL

primitive type.

 SCA 4.1 specification appears to be adding typedefs to

IDL primitive types and bringing back the primitive

sequence types.

 The design patterns for the provides and uses ports are

described in the following subsections.

Figure 4. Provides Port Design Pattern

4.1. Provides Port Design Pattern

A provides port design pattern, as shown in figure 4 below,

consists of:

• Abstract Provides Port Handler is the class that

provides interface operations that adheres to IDL standard

language mappings and is where the provides interface

requests are sent to.

• Abstract Provides Port provides abstraction for all

technology specific provides ports and is associated with the

Abstract Provides Port Handler.

• Technology Specific Provides Port is middleware

technology specific class that handles the incoming

technology requests and delegates the request to the

Abstract Provides Port Handler.

4.2. Uses Port Design Pattern

A uses port design pattern, as shown in figure 5 below,

consists of:

• A Uses Port Base class (Abstract Uses Port) that is

technology neutral following CORBA IDL standard

language mappings for an interface.

• A Technology Specific Uses Port (e.g., CORBA, DDS,

Queues, Device Driver, etc.) class handles outgoing requests

and receives requests from a component’s implementation

class.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

151

Figure 5. Uses Port Design Pattern

5. COMPONENT IMPLEMENTATION

A component implementation is technology neutral by

constraining the usage of specific middleware technology in

its business logic. This is accomplished by:

• Implementation Design Pattern

• SCA interface Restrictions

• Middleware Technology usage restriction

 The implementation design pattern in conjunction with

ports design pattern, as shown in figure 6 below, consists of:

• Abstract Provides Port Handler is inherited by a

component implementation. Component implementation

handles provides interface requests by its Abstract Provides

Port Handler operations that are implemented by component

implementation.

• Abstract Uses Port is an attribute of a component

implementation. A component implementation sends

requests to another component by its Abstract Uses Ports.

• Component Implementation, which is the technology

neutral implementation of component business logic.

 Component implementation restrictions on the usage of

SCA CF interfaces are as follows:

• SCA CF Port interfaces (SCA 2.2.2 CF::Port and

CF::PortSupplier, SCA 4.X CF::PortAccessor). Port

connections are managed at the component container.

• SCA CF::PropertySet interface. The component

implementation contains configure and query property

operations that the component container uses for

transforming the CF::Properties. The component

implementation’s configure and query properties operations

are based upon POSIX primitive types, component’s

structure and structure sequence types. The CORBA string

type is converted into a programming language string type.

• SCA CF::TestableObject or TestableInterface. The

component implementation contains test property operations

that the component container uses for transforming the test

Properties. The component implementation’s test properties

operations are based upon POSIX primitive types.

 Component implementation restrictions on the usage of

middleware technology such as CORBA are as follows:

• CORBA name space

• CORBA operations and types (poa, poa manager,

CORBA base object operations).

Figure 6. Implementation Design Pattern

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

152

7. CONCULSION

This paper described an example component

implementation design pattern that shows how a

component’s implementation can be decoupled from

middleware and framework technologies (e.g. utilizing

CORBA, DDS, SCA, etc.). This enables a more optimized

implementation through the selection of a specific

middleware technology, the flexibility to employ multiple

technologies, for example the use of CORBA or the control

plane and DDS for the data plane, and decrease the cost for

code reuse by decoupling implementation from the

middleware-specific interfaces and protocols.

The approach is based upon industry standards such as IDL

and standard IDL language mappings, and having

middleware port abstractions along with restrictions on the

usage of middleware and SCA interfaces in implementation

logic. This approach allows a technology independent

implementation and, therefore, is portable and reusable and

still SCA compliant.

8. REFERENCES

[1] Software Communications Architecture (SCA), Version

4.0.1, October 1, 2012.
[2] Common Object Request Broker Architecture (CORBA)

Specification, Version 3.1.1 Part 1: CORBA Interfaces,
Version 3.2 formal/2011-11-01, November 2011

[3] The Open Group Standard for Information
Technology—Portable Operating System Interface
(POSIX®) Base Specifications Issue 7
IEEE Std 1003.1, 2013 Edition
Copyright © 2001-2013 The IEEE and The Open
Group

[4] OMG Data Distribution Service (DDS) for Real-time
Systems, Version 1.2, formal/07-01-01, January 2007

[5] Software Communications Architecture (SCA), Version
2.2.2, May 15, 2006

[6] OMG™ Unified Modeling Language™ (OMG UML),
Infrastructure, Version 2.4.1 formal/2011-08-05,
August 2011.

[7] OMG™ Unified Modeling Language™ (OMG UML),
Superstructure, Version 2.4.1 formal/2011-08-06,
August 2011.

[8] C Language Mapping Specification, Version 1.0,
formal/1999-07-35, July 1999

[9] C++ Language Mapping, Version 1.2 formal/2008-01-
09, January 2008

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

153

