
Insights into waveform portability issues of FM3TR waveform

F. Le Roya, L. Rakotondrainibeb, J.- P. Delahayec, A. Mansoura
aLabSTICC, Ensta Bretagne, Brest, France; frederic.le_roy@ensta-bretagne.fr; mancour@ieee.org;

bThales Belgium S.A., Tubize, Belgium ; lahatra.rakotondrainibe@be.thalesgroup.com;
cDGA-MI, Bruz, France, jean-philippe.delahaye@intradef.gouv.fr;

ABSTRACT

This work discusses some issues related to the
implementation of the Future Multiband Multiwaveform
Modular Tactical Radio (FM3TR) waveform on two
different SCA platforms with similar hardware but different
SCA development and deployment environments. Our
experimental results showed that a SCA standardization
based on technologies such as CORBA, XML, IDL, is not
enough to ensure the portability of the waveform. Indeed,
the files generated by certified SCA 2.2.2 environments may
often use specific non-standard IDL interface to generate
software components. To corroborate our conclusion, some
specific examples of SCA components are discussed.
Finally, a non-optimal solution called “device” or “black
box” software component platform is presented and
discussed.

1. INTRODUCTION
In numerous SDR projects the waveform (WF) portability
has been investigated [1], as it is considered that portable
code can reduce time, efforts and save budget investments.
Since the last decade, researchers from all around the world
have been involved in the concept of portable codes. In
“Wireless Innovation Forum Top 10 Most Wanted Wireless
Innovations” [2], porting activity was on the top of the list.
The porting concept was mainly introduced to reinforce the
links between a single source of code for WF to target
multiple platforms to finally reach the interoperability
between various radio systems. In this work, the analysis of
executive settings is investigated and several areas related to
WF design are considered (such as glue code generation,
IDL, CORBA messaging and model of computation (MoC)
of “pipelined components”).
In this manuscript, two types of SCA [3] component
generation are considered. Two generation examples are
also presented. We present also the architectures of WF and
platforms used in this porting work. Finally, we analyze the
porting limitations which were observed in our experiments.

2. OVERVIEW OF PORTABILITY CONCERNS IN
SDR

In this part, the different aspects of SDR WF design that
impacts its portability are presented. In the context of
Software Defined Radio (SDR), the WF design is done on
real time embedded systems, so software portability can be

considered as a multi-aspect problem. The first aspect is
related to the variety of resources used in SDR to execute
digital signal processing. In [1], the authors present a survey
of various hardware platforms proposed in US military SDR
projects with different technical approaches used during the
last two decades. In these projects, different Processing
Elements (PE) is used such as General Purpose Processor
(GPP), Digital Signal Processor (DSP), Field Programmable
Gate Array (FPGA), System on Chip, (SoC), etc. By
combining different PE technologies in heterogeneous
reconfigurable hardware in SDR platforms, recent SDR
architectures can make a trade off among the overall
performance, the power consumption or the flexibility. The
variety of these heterogeneous and distributed architectures
implies different repartition of WF functions and code
between platforms nodes which limits the WF portability.
New technologies such as MPSoCs (Multi Processor System
on Chip), multicore, manycore processors, or NoCs
(Network on Chip) are coming rapidly so the WF portability
can be reduced or even decrease during its long life cycle.
Another aspect of SDR platform that impacts software
portability is the use of a middleware over the SDR platform
hardware. A middleware should help application
programming and software portability by providing high
level of abstraction and a uniform access over distributed
hardware [4]. The support standardized platform services as
given by the SCA [1] and the ESSOR Architecture [5], to
answer the needs of a large variety of WFs is one of the
most important aspect for WF portability. The abstraction
and standardization should be done over the entire SDR
Platform hardware like proposed by the ESSOR architecture
extensions on OE (Operating Environment) Services for
DSP and FPGA and additional APIs defining Radio Devices
and Radio Services to solve the WF portability challenges.
Some important aspects of portability are coming during the
WF development. The SCA Domain Specific Modelling
tools that allow the generation of SCA compliant source
codes is one of these important portability enabler. In fact,
these tools enable WF development methodologies, design
guidelines associated with tooling representing the WF
software development process.
According to [3], the ESSOR methodology is introduced to
define the WF portability. Taking into account the diversity
of platform architectures, this methodology allows to
develop and to share among several actors a common

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

142

waveform. Therefore, the ESSOR methodology relies on
BaseWF/TargetWF design approach, where the BaseWF is
the portable object. This two-step approach can generate, at
the BaseWF level, a software code independent from any
target platform supported by a WF PIM modeling language
profile. According to [5], the ESSOR methodology for
portability is a generic methodology elaborated to design
and validate the BaseWF, and relying on the ESSOR
Architecture.
The different kind of PE implies to deal with the different
programming approaches and different programing
languages such as C/C++ for GPP and DSP, VHDL for
FPGA. This aspect that limits waveform portability is also
discussed in [1].
The rest of the paper presents detailed insights of waveform
portability, especially discussing the SCA component design
with related design tools and some platform aspects in
regard with a porting experience of a waveform.

3. SCA COMPONENT GENERATION
The main objective of the SCA specification is to define the
Operating Environment (OE) in a software radio terminal.
This OE defines a set of software interfaces that forms the
SCA v2.2.2 Core Framework (CF) and other software
architectures elements such as the Application Environment
Profile (AEP). The SCA v2.2.2 also relies on technological
choices such as XML Language for the Domain Profile,
Object Oriented technologies, Design Patterns and UML
Language.
The CF of the SCA specification is mainly defined by its
interfaces (API). The CF is responsible to control, to
manage, and to deploy the waveform on a SDR platform. In
the context of JTR System “a waveform is used to describe
the entire set of functions that occurs from the user to the
RF output and vice versa”. An implementation of a
waveform is a list of interconnected SCA components
producing services.
The component design is based on meta-model defined
within each code generation tool. These meta-models can be
very different from on tool to another despite the facts that
tools are compliant with SCA coding rules, component
definitions, interfaces and XML files of the
“DomainProfile”.

3.1. SCA component definition
In SCA the concept of component is mainly defined with
the IDL used to define the SCA interfaces and the XML
used to “create the SCA Domain Profile elements which
identify the capabilities, properties, inter-dependencies, and
location of the hardware devices and software components
that make up an SCA-compliant system” [3]. API standards
explicitly defines port concept which is required to deploy
software components in SDR platforms. The authors [6]
showed that SCA components inherit a set of interfaces

defined in the Core Framework (CF). To exchange data, the
software components communicate using ports of
processing services, such as: port Provide or port use. These
ports inherit the resource interface of SCA standard and they
must implement service package allowing the CF to manage
interconnection, configuration, testing and lifecycle of
software components.
Each component has a well-defined set of ports specified by
two properties:

1. The type of port or the type of produced service:
An “input port” or “provide” port can receive
requests from component “output port” or use port.
An “input port” should wait remote calls. On the
other hand, an output port represents the client side
that triggers requests to the server side. In the
context of waveform datapath, output ports send
data, while input ports receive requests.

2. The type of data carried by ports: Each port has a
well-defined data type. Relating a port type to a
data type is equivalent to the definition of port’s
interfaces. These interfaces can be standard APIs or
custom interfaces. Creating a custom interface in
IDL allows the designer to choose for instance the
interface name, the associated methods, data types.

3.2. Implementation possibilities
In an SCA development tool chain, the implementation
containers of SCA components are generated by a code
generator. In our experiment, three concepts of
implementation had been studied:

1. At first, a scheme in which SCA component’s class
specializes the interface of the class “Resource” of
the CF.

2. A second scheme makes separation between the
functionalities of a SCA component and its ports.

3. The last one consists in distributing the component
works on its possible ports.

The three concepts are developed from the study of SCA
Domain Specific Modeling tools like “OSSIE”, “SCA
Architect” or an older one “Zeligsoft CE” v2.4 (ZCE), etc.
The codes generated by these three concepts are conforming
to SCA specification; however the code portability depends
on the implementation choices. The drawback of the first
concept is that the waveform functional code or business
code is mixed with the platform non-functional code or glue
code (SCA code). From the portability point of view, the
second concept is better because it separates between
functional code and the glue code also called SCA
container. However, this separation affects the size of the
generated code. The last concept doesn’t provide the
separation of concerns, it does not respect the concept of
encapsulation of software components and it maximizes
porting complexity of a waveform.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

143

The choice of software components implementing model is
strongly linked to the choice of software component
generation tool.
The second choice can promote exchange and understanding
within a team of developers using the same chain of tools.
However, when the chain is changed, the compatibility of
codes is no longer satisfied and the functional code must be
manually integrated in the generated component container.

3.3. Example of code generation.
In this section, two generation examples based on OSSIE
[7] and ZCE [8] are presented. They use the second concept
presented above. Nevertheless, even if they are based on the
same concept, implementations can be different.

3.3.1 OSSIE example
The software component generated by the OEF (OSSIE
Eclipse Feature) for the interface of the Figure 1 produces
three C++ files: one for the component class declaration, the
second and the last one “main.cpp” are required to start the
component in a thread of a middleware (eg. omni_thread).
In addition to the source files, the tool generates
configuration scripts of installation and XML files for the
“DomainProfile” of the SCA CF.

Figure 1 : A minimal SCA component

The class “Component1” generated by OEF inherited the
“Resource_impl” class which includes all classes necessary
for SCA support, such as for example “getPort”, “start”,
and “stop”. In addition to these SCA methods, the
component body, file “Component1.cpp” contains several
methods such as “Run”, “releaseObject”, “boot”, “query”,
“configure” and “ProcessData”. “ProcessData” should
implement the functionality of the component. Component
interfaces are also instantiated in this class as illustrated in
Figure 2.

Figure 2 : SCA component generated by OEF

In the OSSIE example, “dataIn_0” (resp. “dataOut_0”) ports
inherit classes from classes “complexShort_p” (resp.
“complexShort_u”). To achieve this task, these two ports
use well defined methods “getData” and “pushpacket”.

These methods interface the component with finite size
buffer of type “complexShort”. The function code defined in
the “ProcessData” method is well isolated from its
environment. But the model of computation works as a
bounded KPN[9], [14]. In this model, network queues
ensure the exchange of messages in asynchronous mode.
3.3.2 ZCE example

The description of ZCE SCA component which fulfills the
concept of component container (glue code) that
encapsulates the functional code is illustrated in Figure 3.

Figure 3 : ZCE software component

ZCE adds proprietary infrastructure and scripts (written by
developers) to make possible Component Based Software
Design (CBSD). The CBSD offered by Zeligsoft tool
addresses the limitations of IDL2.0 based design by
establishing architectural choices for component
implementations.
ZCE can integrate ORB from different providers and
various OS and CF. According to [10], SCA component
generated by ZCE satisfies the concept of components in the
SCA specification [6]. It is worth mentioning that the
architecture of a ZCE component is divided into three parts:
the functional one, the SCA connector and the linking code.
When ZCE generates an SCA component three classes
“SourceMain”, “SourceServant” and “SourceWorker” are
produced: “SourceMain” creates an object of class
“SourceServant” connected to the CF, “SourceServant”
instantiates the “SourceWorker” and classes associated with
port components.
The functional code describing functionalities of an SCA
component must be completed in the class “SourceWorker”
according to coding rules of the waveform designer.
The component of Figure 1 can’t be generated exactly in
the same way by two environments. As illustrated in Figure
7, ports implement specific classes “SimpleOctePacketSink”
and “SimpleOctePacketUses” that are specific to ZCE.

Moreover, the functional code of the worker class is
executed in a lightweight process (eg. dmtkThread) which is
different from the middleware thread.

With these two examples, we showed that the model of
computation control can be defined by communication

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

144

meta-model used by SCA development tools. Finally,
functional code can depend on MOC used by tools
generators to connect SCA software components.

4. FM3TR TARGET WF ON TWO
HETEROGENEOU FM3TR PLATFORMS

4.1. Porting specification
The objective of this porting work was to evaluate porting
effort in porting processes of SCA waveforms. For this task,
we chose the reference SCA model FM3TR waveform
developed by Calit2 [11]. This waveform implements
frequency hopping over both very high frequencies (VHF)
and ultra-high frequency (UHF) of the military bands (30-
400 MHz). The FM3TR waveform can transport voice and
data. It had been deployed by Calit2 in an SDR-4000. Our
objective is trying to port it on an SDR-3002 platform that
came from the same “Spectrum Signal Processing” branch
of “Vecima” society. “Spectrum Signal Processing”
becomes one of the leading developers of high-performance,
software-reconfigurable SDR platforms.

4.2. Software architectures
The software architecture of the FM3TR waveform
developed by Calit2 is illustrated in [11]. The Calit2
demonstrator is composed of two platforms SDR-4000
associated with two computers supporting a GUI which
encapsulates sound or Instant Text Messaging (ITM) over
TCP/IP. As [11] shows waveform components can be
decomposed into software components using a network
point of view.

The Calit2 implementation of FM3TR is organized around
two kinds of source files: the “SCA components” and the
“Devices”. The software components are generated using
the “SCA Architect” of Nordiasoft tool chain [12].
4.2.1. Devices

• The Net device (data/voice) handles the platform
specific transport of voice and data packets between
the SDR platform and the TCP/IP Ethernet interface.

• The Modem device is compliant to MHAL modem
API. It encapsulates (or extracts) voice and data to
MHAL frames. These frames are exchanged with non-
CORBA components.

4.2.2. SCA components
• The Continuously Variable Slope Delta modulation

(CVSD) codec is a voice variable step coding and
decoding component.

• The Data Link Control (DLC) segments and
reassembles voice and data messages. It implements
the classical Automatic Repeat reQuest (ARQ)
network protocols.

• The RS is an SCA resource that encodes outgoing data
packets into a R-S block code and decodes received R-
S encoded blocks.

• The data Media Access Control (MAC) converts the
format between MHAL frames to match the RS
encoding format.

• The voice MAC converts the format between voice
samples and MHAL frames.

4.3. Platform architecture and mapping
4.3.1. SDR-4000 architecture
The Calit2 demonstrator platform combines the SDR-4000
with a "National Instrument" PXI system for the frequency
transposition. This PXI system consists of:

• A card "PXI-5610 Up-converter",
• A card "PXI-5600 Down-converter".

Application or platform components are implemented in the
GPP processor card PRO-4600 subsystem SDR-4000. Non
CORBA processing base band signal component is
implemented in the TMS320C6416 processor PRO-4600
card while the frequency translation component is done
using the Virtex-4 of the XMC-3321 card.

4.3.2. SDR-3002 architecture
The architecture of the platform (SDR-3002) used in our
project is illustrated in Figure 4. The entire system consists
of a combination of a SCA subsystem and a transceiver
subsystem. The transceiver subsystem is a part of the radio
chain that converts the baseband into a radio signal for
transmission and converts the radio signal into a baseband
reception.

Figure 4 : SDR-3002 platform

The SDR-3002 platform consists of two integrated
subsystems in the same cPCI chassis.
The DRT-4001 consists of an amplifier subsystem and a
transceiver (transceiver) radio frequency that transposes an
intermediate frequency signal up to 3 GHz. The RF signal to
be transposed into the DRT-4001 should be centered on an
intermediate frequency (IF) of 70 MHz. The RF signal
received by the DRT-4001 is transposed to 17.5 MHz
The sub SDR-3002 system consists of:

• The TM1-3350 grabber radio signal (both channels
ADC and two DAC channels).

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

145

• SBC board: Single Processor Board, x86/Win (Host
PC)

• The PRO-3100 card that has four Xilinx Virtex-II, a
power PC 405 and an Ethernet interface.

• Ethernet with a GPS receiver.
4.3.3. Mapping and result
The chalenge of SCA FM3TR waveform portability, based
on the CALIT 2 SCA waveform is illustrated in [11]. The
ZCE model obtained is illustrated in Figure 8.
The transfer methodology of application code used in the
ZCE model consists of:

1. Searching equivalences between the port types
available in ZCE and port types used in the target
code.

2. Generating each SCA component of the waveform.
3. Adding Manually the functional code in ZCE

components.
4. Creating the SCA model.

We have made the following mapping of the waveform on
the SDR-3002 platform.

Table 1 : Waveform mapping on the SDR-3002

Component
card

Target
Circuit

OS

cvsd PRO3500,
EPMC8310

P0,
PPC7410

VxWork

datamac PRO3500,
EPMC8310

P0,
PPC7410

VxWork

fm3trcontroller SBC Pentium Windows
mac PRO3500,

EPMC8310
P0,
PPC7410

VxWork

nspr842_duc PRO3100 XC2V3000
Virtex-II,
SAND 0

VxWork

nspr842_ddc PRO3100 XC2V3000
Virtex-II,
SANN 3

VxWork

rs PRO3500,
EPMC8310

P0,
PPC7410

VxWork

net SBC Pentium Windows
voiceNet SBC Pentium Windows
modem_device PRO3500,

EPMC8310
P0,
PPC7410

VxWork

In this mapping phase, the use of “ZCE” instead of “SCA
architect” initially used by Calit2 team made the porting
process difficult to be manually managed.

5. OBSERVED PORTING LIMITS
Hereinafter, the limitations observed on development tool,
middleware and platforms are discussed.

5.1. Development tool limitations
The observed limitations come from component interfaces
and architecture.

5.1.1. Component interfaces
SCA compliant platform comes with its BSP (Board
Support Package), its devices and its software development
kit (SDK). As indicated by SCA specification, devices and
component interfaces may be abstracted by additional
specific interfaces that warranty independence of software
waveform to platform services. However, BSP and SDK
libraries called by SCA tools in generation process of
software component can use specific IDL which is not
defined in SCA CF interface. In next example; three IDL
interfaces generated by tree different SCA development
tools are provided.

Figure 5 : IDL definition for different Packet interfaces

Figure 5 shows that for similar service of data exchange
different interface definitions with some differences in
behavior are used and are supported by Platforms. It
represents an additional porting effort to adapt from one to
another and sometimes difficult to be realized. However this
porting can be achieved by importing specific libraries from
the first tool/platform to the second one or by redesigning
the waveform according to fit this specific interface. This
experience shows that the use of different IDL interface
definitions between different SCA platforms limits the
portability event if tool chains help to perform the required
transformation.

5.1.2. Component architecture
The SCA specifies that components inherit the “Resource”
class from the SCA CF. A component must implement
“uses” and “Provides” ports (see Figure 1). However, SCA
specification doesn’t specify details about implementation.
Therefore, the designer can freely implement components.
In the case of “ZCE” tool, code of an instance of a “worker”
class runs functional code i.e. a part of a component
waveform. This approach separates the structural from the
functional parts of a software component. Indeed, the
“servant” class implements “Provide” ports that realize
interfaces of the processing task (CF::Resource). This
separation of concerns is at the expense of code expansion.

interface IoPacket {
 Oneway void pushPacket

 (in CF:OctetSequence Payload);};

interface SimpleOctetPacketSink {
 void pushPacket
 (in NullControl unusedControl,
 in CF:OctetSequence Payload)
 raises (PushPacketFailure);};

interface OctetStream : PayloadStatus {
 void pushPacket
 (in StreamControlType control,
 in JTRS::OctetSequence payload)

 raises(UnableToComplete);};

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

146

Another software design approach uses interface by
encoding method. According to our third concept find in
subsection 3.2, functionalities are embedded in
implementations of “class Port”. The major drawback of this
approach is the loss of functional code visibility.
In our study, we distinguished between two types of SCA
component implementations. The first follows the
methodology CBSD (Component-Based Software Development)

while the second uses the customer separation / server
provided by CORBA 2.x component. The first approach
improves the portability; but the designer is free to define
the implementation because the SCA standard does not
impose any constraint on the implementation else than the
use of CORBA.

5.2. CORBA and MOC limitations
SCA waveforms are made from a blend of software
components (application components, devices API and
controllers). This combination of software components
executes usually on target in pipelined manner. SCA 2.2.2
relies on CORBA; data transported by the CORBA bus
provides two types of messages: “One-way messaging” and
the “two-way messaging”. The authors of [13] describe the
problem of “pipeline” vacuum related to the use of “two-
way messaging”. They also describe how “one-way
messaging” can be used to limit the impact of empty
pipeline on throughput and processing latency. “One-way
messaging” is usually considered as a better approach to
increase processing’s rate. Finally, solutions such as flow
control mechanism for “one-way messaging” and “threads”
using “two-way messaging” are proposed to address
drawbacks.
According to the middleware used by SCA CF, (e.g. TAO
or omniORB, etc.) ORB settings act on the waveform
portability. Indeed this action changes the model of
computation (MOC) [14] of component message exchanged
in waveform applications.

5.3. Platform limitations
Processing boards inside SDR platform usually have fast
specific link that can be used to bypass the CORBA bus. For
example, “FlexFabric” of Figure 6 are used by Spectrum
Signal systems for high-speed communication between two
processing resources of the SDR platform. As illustrated in
this figure, connection between ports of the two components
is associated with the use of an abstract port called
“DeviceThatLoadedThisComponentRef”. For the SDR-
3002 platform, the use of this port in a ZCE model refers
explicitly “FlexFabric” link in the model. In this
configuration, model and after the source code becomes
platform dependent and it is not portable. In addition, this
type of connection modifies the computation model of
waveform. Indeed, they can be configured in point to point
blocking and non-blocking channel. Using this type of
connection limits waveform portability, because it is

specific to the platform and it modifies the scheduling of the
execution or the computation model.

Figure 6 : Fast communication use in ZCE

6. CONCLUSION
In this manuscript, we investigate the portability of FM3TR
waveform on SDR-3002. Initially, Calit2 implemented
FM3TR an SDR-4000 which is similar to our target
platform SDR-3002. Even though the two platforms are
similar, the portability of the code is not an easy task. In
fact, our experimental works showed that generated source
codes depend on software development kit (SDK), CORBA
ORB, and OS for the implementation. We have to say again
that the execution model is not defined in the SCA
specification. This model can be affected by the
implementation of software components and the setting of
the ORB. Accordingly, this affects the waveform code
portability by creating dependencies on the platform.
Our experimental works demonstrate that the SCA
development tool chain (such as “Zeligsoft CE”, “Spectra
CX” or “SCA Architect”) improves the development of a
SCA waveform. However, the software configurations are
difficult (e.g.: dependency management, settings ...) code
portability is then partial between tool chain elements and
portability at the model level is also poor.
Even if SCA specification enforces the uses of a large sets
of Interfaces (mainly related to CF), the use of additional
APIs (Radio Devices and Radio Services) that should be
standardized to cover all the waveform needs on the overall
SDR platform. Therefore, there are still difficulties to port a
waveform on COTS platform because these products don’t
provide a support for additional standardized APIs.
Finally, we can notice the facts that selecting an appropriate
meta-model can help us to adapt the code to any specific
platform. This approach can be carrying on by using MDE
approach which can better manage the development and
validation of SCA models.

6. REFERENCES
[1] L. Goeller and D. Tate, “A Technical Review of Software

Defined Radios: Vision, Reality, and Current Status”,
proceeding of the IEEE Military Communications Conf. 2014.

[2] “Wireless Innovation Forum Top 10 Most Wanted Wireless
Innovations”, Document WINNF-11-P-0014, Version V3.0.0
24 September 2013.

[3] Software Communications Architecture Specification, JTRS
Standards, v2.2.2, may 2006

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

147

[4] I. Gomez Miguelez, et al. “ALOE: an open-source SDR
execution environment with cognitive computing resource
management capabilities”, IEEE communications magazine,
Vol. 49, num. 9, September 2011, p. 76-83

[5] C. Serra et al., “ESSOR Architecture – Motivation and
Overview”, Proceeding of the SDR’10 Conf. 2010.

[6] Joint Program Executive Office, “Software Communications
Architecture Specification”, version 2.2.2, 2006.

[7] E. Paone, “Open-Source SCA Implementation-Embedded and
Software Architecture - OSSIE SCA Waveform
Development”, Master Report, KTH, 2010.

[8] M. Hermeling, J. Hogg and F. Bordeleau, “Developing SCA
Compliant Systems”, Zeligsoft White paper, 2005.

[9] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming”, Proceedings of IFIP Congress, 1974.

[10] M. Hermeling, “Code Generation for SCA Components”,
Zeligsoft White Paper, 2005.

[11] P. Johansson, Z. Cao and W. Hodgkiss “Rapid Porting of an
SCA-Compliant FM3TR Waveform”, Proceeding of the SDR
Forum Tech. Conf. 2009.

[12] “SCA Architect”, Nordiasoft,
 http://www.nordiasoft.com/#!sca-architect/cxxs

[13] S. Bernier, H. Latour and J. P. Zamora Zapata, “How different
messaging semantics can affect SCA applications
performances”, International Journal in Analog Integrated
Circuits and Signal Processing, Vol 69, Issue 2-3, December
2011, Pages 227-243.

[14] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for
comparing models of computation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol 17 , Issue 12, December 1998,Pages 1217 – 1229.

Figure 7 : SCA component generated by ZCE

Figure 8 : FM3TR waveform deployment in a SDR-3002

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

148

